Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer
نویسندگان
چکیده
In prostate cancer, androgen receptor (AR) binding and androgen-responsive gene expression are defined by hormone-independent binding patterns of the pioneer factors FoxA1 and GATA2. Insufficient evidence of the mechanisms by which GATA2 contributes to this process precludes complete understanding of a key determinant of tissue-specific AR activity. Our observations suggest that GATA2 facilitates androgen-responsive gene expression by three distinct modes of action. By occupying novel binding sites within the AR gene locus, GATA2 positively regulates AR expression before and after androgen stimulation. Additionally, GATA2 engages AR target gene enhancers prior to hormone stimulation, producing an active and accessible chromatin environment via recruitment of the histone acetyltransferase p300. Finally, GATA2 functions in establishing and/or sustaining basal locus looping by recruiting the Mediator subunit MED1 in the absence of androgen. These mechanisms may contribute to the generally positive role of GATA2 in defining AR genome-wide binding patterns that determine androgen-responsive gene expression profiles. We also find that GATA2 and FoxA1 exhibit both independent and codependent co-occupancy of AR target gene enhancers. Identifying these determinants of AR transcriptional activity may provide a foundation for the development of future prostate cancer therapeutics that target pioneer factor function.
منابع مشابه
Op-nare131382 1..16
In prostate cancer, androgen receptor (AR) binding and androgen-responsive gene expression are defined by hormone-independent binding patterns of the pioneer factors FoxA1 and GATA2. Insufficient evidence of the mechanisms by which GATA2 contributes to this process precludes complete understanding of a key determinant of tissue-specific AR activity. Our observations suggest that GATA2 facilitat...
متن کاملCCAR1 promotes chromatin loading of androgen receptor (AR) transcription complex by stabilizing the association between AR and GATA2
Androgen receptor (AR), a ligand-dependent transcription factor, plays a critical role in prostate cancer onset and progression, and its transcriptional function is mediated largely by distinct nuclear receptor co-regulators. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1) functions as an AR co-activator. CCAR1 interacted with and enhanced the transcriptional activity of AR. Dep...
متن کاملA hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth.
Androgen receptor (AR) is a ligand-dependent transcription factor that plays a key role in prostate cancer. Little is known about the nature of AR cis-regulatory sites in the human genome. We have mapped the AR binding regions on two chromosomes in human prostate cancer cells by combining chromatin immunoprecipitation (ChIP) with tiled oligonucleotide microarrays. We find that the majority of A...
متن کاملGATA2 as a potential metastasis-driving gene in prostate cancer
Effective treatment for metastatic prostate cancer is critically needed. The present study was aimed at identifying metastasis-driving genes as potential targets for therapy (oncotargets). A differential gene expression profile of metastatic LTL-313H and non-metastatic LTL-313B prostate cancer tissue xenografts, derived from one patient's specimen, was subjected to integrative analysis using th...
متن کاملTargeting pioneering factor and hormone receptor cooperative pathways to suppress tumor progression.
Nuclear receptors and pioneer factors drive the development and progression of prostate cancer. In this disease, aggressive disease phenotypes and hormone therapy failures result from resurgent activity of androgen receptor (AR) and the upregulation of coactivator protein p300 and pioneer factors (e.g., GATA2 and FOXA1). Thus, a major emphasis in the field is to identify mechanisms by which cas...
متن کامل